Involvement of the peroxisome proliferator-activated receptor alpha in regulating long-chain acyl-CoA thioesterases.
نویسندگان
چکیده
Long-chain acyl-CoA thioesterases catalyze the hydrolysis of acyl-CoAs to the corresponding free fatty acid and CoA. We recently cloned four members of a novel multi-gene family of peroxisome proliferator-induced genes encoding cytosolic (CTE-I), mitochondrial (MTE-I), and peroxisomal (PTE-Ia and PTE-Ib) acyl-CoA thioesterases (Hunt et al. 1999. J. Biol. Chem. 274: 34317-34326). As the peroxisome proliferator-activated receptor alpha (PPARalpha) plays a central role in regulating genes involved in lipid metabolism, we examined the involvement of this receptor in regulation of the thioesterases, particularly CTE-I and MTE-I. Northern blot analysis shows that the induction of these thioesterases by clofibrate is mediated through a strictly PPARalpha-dependent mechanism. All four acyl-CoA thioesterases are induced at mRNA level by fasting and using PPARalpha-null mice, it is evident that the increase in CTE-I due to fasting is mainly independent of the PPARalpha in liver and heart. The CTE-I gene responds rapidly to fasting, with induction of mRNA and protein evident after 6 h. This fasting effect is rapidly reversible, with CTE-I mRNA returning almost to control levels after 3 h refeeding, and being further repressed to 20% of control after 9 h refeeding. Although CTE-I mRNA shows a low basal expression in liver, it can be suppressed 90% by feeding a fat-free diet. These data demonstrate that the nutritional regulation of the thioesterases involves the PPARalpha and other signaling pathways responsible for activation and repression. Putative physiological functions for the acyl-CoA thioesterases are discussed.
منابع مشابه
Characterization of an acyl-coA thioesterase that functions as a major regulator of peroxisomal lipid metabolism.
Peroxisomes function in beta-oxidation of very long and long-chain fatty acids, dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes, thromboxanes, pristanic acid, and xenobiotic carboxylic acids. These lipids are mainly chain-shortened for excretion as the carboxylic acids or transported to mitochondria for further metabolism. Several of these carboxylic acids are sl...
متن کاملRole of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract
Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...
متن کاملPeroxisome proliferator-induced long chain acyl-CoA thioesterases comprise a highly conserved novel multi-gene family involved in lipid metabolism.
Long chain acyl-CoA esters are important intermediates in degradation and synthesis of fatty acids, as well as having important functions in regulation of intermediary metabolism and gene expression. Although the physiological functions for most acyl-CoA thioesterases have not yet been elucidated, previous data suggest that these enzymes may be involved in lipid metabolism by modulation of cell...
متن کاملDivergence between human and murine peroxisome proliferator-activated receptor alpha ligand specificities.
Peroxisome proliferator-activated receptor α (PPARα) belongs to the family of ligand-dependent nuclear transcription factors that regulate energy metabolism. Although there exists remarkable overlap in the activities of PPARα across species, studies utilizing exogenous PPARα ligands suggest species differences in binding, activation, and physiological effects. While unsaturated long-chain fatty...
متن کاملNovel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism.
Peroxisomes are single membrane bound organelles present in almost all eukaryotic cells, and to date have been shown to contain approximately 60 identified enzymes involved in various metabolic pathways, including the oxidation of a variety of lipids. These lipids include very long-chain fatty acids, methyl branched fatty acids, prostaglandins, bile-acid precursors and xenobiotics that are eith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 41 5 شماره
صفحات -
تاریخ انتشار 2000